Synthesis of (\pm) -Allosedamine by Iodide Treatment of Isoxazolidinium Salts

Angelo Liguori", Rosaria Ottana b, Giovanni Romeo* ', **Giovanni Sindona", and Nicola Uccella"** "

Dipartimento di Chimica, Università della Calabria,^a 1-87036 Arcavacata di Rende, Italy

Dipartimento Farmaco-Chimico, Università di Messina,^b 1-98168 Messina, Italy

Received May 17, 1989

Key Words: (\pm)-Allosedamine / 1,3-Dipolar cycloaddition / Five-membered ring opening / Isoxazolidinium salts

A simple stereospecific route to the (\pm) -allosedamine alkaloid has been accomplished **by** ring opening **of the** isoxazolidinium salt **2** with lithium iodide.

Among the ring-opening reaction processes of substituted isoxazolidinium salts^{$1-5$}, the lithium iodide treatment has recently shown to be a simple and eficient procedure for the formation of 1,3-amino alcohols having various chiral centers⁶⁾.

Prior to such experiments, examples of this type of chemical modification have been restricted to more complex approaches $1,2,4$. The use of LiI allows for the extension of the $N-O$ bond cleavage in isoxazolidinium precursors to a broad range of N,O-heterocyclic derivatives obtained with high stereoselectivity by 1,3-dipolar cycloaddition of nitrones to alkenes^{7,8)}. On this basis, a modified route to the (\pm) -allosedamine system is described here which offers the benefits of simplicity and availability of reagent materials⁶ and which is potentially applicable to other members of this group of natural products.

Isoxazolidine **1** can be easily obtained as the major component (98%) of the reaction mixture, together with its diastereoisomer, by 1,3-dipolar cycloaddition of 2,3,4,5-tetrahydropiridine 1-oxide to styrene. The stereoselectivity of this process, compared to that observed for the 1.3-dipolar cycloaddition of the same nitrone to unconjugated olefins², appears to be very high, leading nearly exclusively to the 5-substituted isoxazolidine **1** whose configuration results from an *exo* rather than an *endo* addition³¹.

The corresponding isoxazolidinium salt **2** (Scheme) has been isolated in quantitative yield from methyl iodide treatment of 1⁶ and was characterized by fast-atom bombardment mass spectrometry *(m/z* = 218 [M+]). The 'H-NMR spectrum of **2** showed 3a-H and 2-H as multiplets centered at $\delta = 4.00$ and 6.05, respectively. The methyl group absorbed as a singlet at $\delta = 3.84$, while 3-H₂ gave rise to an ABXY system with A and B resonances centered at $\delta =$ 2.82 and 3.23, respectively. Interestingly, the signals of the methylene protons at C-7, adjacent to the nitrogen atom, appeared as a multiplet at $\delta = 4.16$, well separated from the other methylene signals. The assignments have been confirmed by selective decoupling experiments and by NOE difference spectroscopy (NOEDS) measurements⁹.

In particular, irradiation of the resonance of 2-H resulted in a positive enhancement of the signals for the $CH₂$ protons adjacent to the nitrogen atom and of the upfield resonance of $3-H_2$. Likewise, when 3a-H was irradiated, the signal for the methyl group was enhanced, together with the downfield resonance of $3-H_2$ (3 β -H). These results are indicative of a syn relationship between 2-H and the 7α proton. With respect to the 5-membered ring, in particular, these data suggest a preferential conformation in solution which brings 2-H and the *2* proton at C-7 close enough to induce enhancements in their respective signals, as supported by the magnitude of the observed NOE $(8\%)^{10}$.

The isoxazolidinium salt **2** was then treated with lithium iodide in dioxane solution for 8 h to give (\pm) -allosedamine (3) and the amino ketone **4.** The isolated products have the structures assigned on the basis of their spectral properties^{2,3)}.

Scheme

A similar synthetic approach to the (\pm) -allosedamine system was reported which employed the LiAlH₄ treatment of the isoxazolidinium salt 2 to give a mixture of (\pm) -allosedamine (78%) and (\pm) sedamine (22%) ²⁾. The results obtained are amenable to two competing ring-opening reaction pathways: the simple $N-O$ bond rupture, which leads exclusively to the formation of allosedamine **(3),** and a slower reaction leading to ketone **4** by abstraction of the hydrogen atom at C-2 in **2,** with elimination of the positively charged nitrogen³⁾. The subsequent nonstereoselective reduction by LiAlH₄ gives a 1:1 mixture of sedamine and allosedamine.

As reported^{6,10}, both structural and stereochemical features of the substrate deeply affect the reaction pathway of the isoxazolidinium salts. The ring-opening elimination towards ketone **4,** observed here during the LiI treatment of the isoxazolidinium salt **2** and previously postulated for the LiAl H_4 process³, is effectively competing with the amino alcohol formation. In fact, although the NOE analysis just discussed suggests the preferential conformation **2'.** on the basis of the consideration that the pseudorotation of the pentatomic ring is only a few kcal mol^{-1}, the transperiplanar arrangement of the $C-H$ and $O-N$ bonds around the $C-O$ bond is quite readily accessible; this favors stereoselectively the formation of the keto derivative $4^{6,10}$. The elimination process can of course be drastically suppressed by changing the configuration at C-2 of the isoxazolidinium salt $6,10$.

In contrast to the $LiAlH₄$ procedure, the use of LiI for the ringopening reaction of isoxazolidinium salt **2** to allosedamine **(3)** offers the advantage of overcoming most of the separation problems present in the LiAlH₄ procedure. The synthetic scheme proposed here leads. in fact, to two reaction products **(3** and **4)** which show distinct physicochemical properties and are easily recognizable and separable by conventional column chromatography.

Formation **of** allosedamine **(3)** occurs through a redox reaction with formation of iodine, experimentally ascertained, from the iodide oxidation, probably by a single-electron transfer mechanism. An inversion **of** the yields for **3** and **4** has been observed when the reaction was performed at lower temperatures (35% and 65%, respectively, at 65°C). This behavior is interpreted by different temperature dependence **of** the two competing routes, starting from **2:** an increase **of** the reaction temperature improves the electron-transfer process, and the radical pathway, leading to the formation of (\pm) -allosedamine, becomes the preferred one.

Finally, with reference to other available synthetic routes to (\pm) allosedamine^{2,3)} (3), the ring-opening reaction achieved by the use of LiI proves to be an effective and valuable procedure, since the very mild experimental conditions required allow for the extension **of** the same process to other cycloadducts, also in the presence **of** different functional groups which often are not compatible with LiAlH4 or catalytic reduction processes.

This work was supported by *CNR* and *M. P. I.* grants.

Experimental

IR spectra: Perkin-Elmer 377. $-$ ¹H-NMR spectra: Bruker WM 300, CDCI, solutions with tetramethylsilane as internal standard. NOE measurements were performed at 300 MHz by the FT difference method on carefully degassed CDCl₃ solutions⁹. A 90 $^{\circ}$ observation pulse and a recovery time of 10 T_i were used. - Mass spectra: **VG** ZAB 2F, 60 eV with an ion source temperature of 150°C.

2-Phenyl-3,3a,4,5.6,7-hexahydro-2H-isoxazolo/2,3-a]pyridine **(1)** was prepared in 98% yield by flash-chromatographic treatment of the isomeric mixture obtained from the 1,3-dipolar cycloaddition of 2,3,4,5-tetrahydropyridine 1-oxide with'styrene').

Isoxazolidinium Salt **2** was prepared according to the previously reported method⁶⁾ in nearly quantitative yield; light yellow solid, mp $143-145^{\circ}$ C (ether). - IR (neat): $\tilde{v} = 3000 \text{ cm}^{-1}$, 2800, 1490, 1450, 1370, 1270, 970, 930, 760. - ¹H NMR (CDCl₃, 300 MHz): $\delta = 2.04$ (m, 6H, 4-, 5-, and 6-H₂), 2.96 and 3.23 (m, 2H, 3-H₂), 3.84 **(s,** 3H, CH3), 4.16 (m, 2H, NCH2), 5.03 (m, 1 H, 3a-H), 6.05 (dd, 1 H, 2-H), 7.3-7.5 (m, 5H, aromatic H).

Preparation of $(+)$ *-Allosedamine* (3) and *N*-Methyl-2-phenacyl*piperidine* **(4):** To a solution **of** the isoxazolidinium salt **2** (0.50 **g,** 1.4 mmol) in anhydrous dioxane (35 ml), lithium iodide (0.38 g, 2.8 mmol) was slowly added, and the mixture was heated at reflux under stirring for 8 h. **A** 10% sodium sulfite solution (10 ml) was then added, and the solution was extracted with chloroform (3×15) mi). Concentration of the combined organic extracts afforded an oily product which was subjected to flash chromatography methanol/chloroform (8:92)] to give 0.19 g (61%) of **3** as the first eluted product. IR, NMR, and mass spectra were completely superimposable with those reported in the literature¹¹⁾.

Further eluted fractions gave 0.12 g (39%) of 4 as an oil. $- IR$ (neat): *3* = 2930 cm-I, 2840, 2760, 1670, 1140, 1200, 1O00, 760, 700. - ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.25 - 1.90$ (m, 6H, piperidine 3-, 4-, and 5-H2), 2.31 **(s,** 3H, NCH2), 2.78-3.04 (m, 3H, piperidine CH and $6-H_2$), $3.30-3.52$ (m, $2H$, $7-H_2$), $7.50-8.10$ (m, 5H, aromatic H). $-$ MS (70 eV): m/z (%) = 217 (4) [M⁺], 105 (8), ⁹⁹**(9,** 98 (100). 77 (10).

CAS Registry Numbers

styrene: 100-42-5 *1* 2,3,4,5-tetrahydropyridine 1-oxide: 34418-91-2 **1:** 70546-85-9 / **2:** 70561-78-3 *1* **3:** 70561-76-1 *1* **4:** 121961-27-1 /

- ¹⁾ E. G. Baggiolini, J. A. Iacobelli, B. M. Hennessy, A. D. Batcho, J. F. Sereno, M. R. Uskokovic, *J. Org. Chem.* **51** (1986) 3098.
- *) J. J. Tufariello, *Acc. Chem. Res.* **12** (1979) 396; J. J. Tufariello,
- Sk. Asrof Ali, *Tetrahedron Lett.* **1978,** 4647. **3,** W. Ibebeke-Bomangwa, C. Hootele, *Tetrahedron* **43** (1987) 935; C. Hootele, W. Ibebeke-Bomangwa, F. Driessens, *S.* Sabil, *Bull. SOC. Chim. Belg.* **96** (1987) 57.
- **4,** J. J. Tufariello, G. B. Mullen, J. J. Tegeler, E. **1.** Trybulski, *S.* C. Wong, Sk. A. Ali, *J. Am. Chem. SOC.* **101** (1979) 2435.
- *5,* A. Liguori, G. Sindona, N. Uccella, *Tetrahedron* **39** (1983) 683; *Tetrahedron* **40** (1984) 1901.
- *6,* A. Liguori, G. Romeo, G. Sindona, N. Uccella, *Chem. Ber.* **121,** (1988) 105.
- ') **J.** J. Tufariello, J. M. Puglis, *Tetrahedron Lett.* **27** (1986) 1265.
- *) A. **S.** Amarasekara, A. Hassner, *Tetrahedron Lett.* **28** (1987) 3151.
- **9,** J. D. Marsh, J. K. M. Sanders, *orq. Ma4n. Reson.* **18** (1982) 122.
- ¹⁰⁾ A. Liguori, G. Romeo, G. Sindona, N. Uccella, *Magn. Reson. Chem.* **26** (1988) 974.
- **'I)** C. Hootele, F. Halin, *S.* Thomas, *Tetrahedron* **41** (1985) 5563.

 $[153/89]$